

Intel® Optane™ DC Persistent
Memory

Quick Start Guide

June 2020

Revision 1.1

Revision: 1.0 2

Contents

1 Getting Started .. 3

1.1 Basics ... 3
1.1.1 Operating Modes .. 3
1.1.2 Using Persistent Memory ... 4

1.2 Installation .. 4
1.2.1 System Requirements ... 5
1.2.2 Software and Firmware Requirements 5
1.2.3 Handling, Installation and Removal 5
1.2.4 DIMM Populations ... 5
1.2.5 Documentation and Software Resources 7

2 Managing PMM .. 8

2.1 Discovery .. 8
2.2 Provisioning ... 9

2.2.1 Create Memory Allocation Goal ... 9
2.2.2 Linux* Persistent Memory and Namespace Management 10

2.3 Maintenance .. 14
2.3.1 Firmware Update ... 14
2.3.2 Adding New PMM ... 16
2.3.3 Moving PMM .. 16
2.3.4 Replacing PMM .. 16

2.4 Debug and Troubleshooting ... 17
2.4.1 Checking PMM Health ... 17
2.4.2 Diagnostics ... 18
2.4.3 Recovering from Issues .. 18
2.4.4 Dump Debug Log ... 21
2.4.5 Dump System Support Data .. 21

Revision: 1.0 3

1 Getting Started

Intel® Optane™ DC persistent memory represents a new class of memory and
storage technology architected specifically for data center usage. Platforms

based on the 2nd Gen Intel® Xeon® Scalable processors may be populated with
a combination of DRAM and Intel® Optane™ DC persistent memory. DRAM has

the lowest memory latency. Intel® Optane™ DC persistent memory has slightly
higher latency but offers affordable capacity and data persistence.

This document will use “PMM” in reference to the Intel® Optane™ DC persistent

memory module.

1.1 Basics

Intel® Optane™ DC memory modules support two modes: Memory Mode,

which is volatile, and App Direct mode, which is byte addressable persistent

memory. The modes determine which capabilities of the Intel persistent
memory module are active and available to software. The two operating modes

may be configured to run concurrently.

1.1.1 Operating Modes

In Memory Mode, the DRAM acts as a cache for the most frequently accessed
data, while the Intel® Optane™ DC persistent memory provides large memory

capacity. Cache management operations are handled by the Intel® Xeon®
Scalable processor’s integrated memory controller.

When data is requested from memory, the memory controller first checks the

DRAM cache, and if the data is present, the response latency is identical to

DRAM. If the data is not in the DRAM cache, it is read from the Intel® Optane™
DC persistent memory with slightly longer latency.

The applications with consistent data retrieval patterns that the memory

controller can predict will have a higher cache hit-rate, and should see its

performance close to all-DRAM configurations, while workloads with highly-
random data access over a wide address range may see some performance

difference versus DRAM alone.

Also, data is volatile in Memory Mode; it will not be saved in the event of power

loss. Persistence is enabled in the second mode, called App Direct.

In App Direct Mode, applications and the Operating System are explicitly
aware there are two types of direct load/store memory in the platform and can

direct which type of data read or write is suitable for DRAM or Intel® Optane™
DC persistent memory.

Operations that require the lowest latency and don’t need permanent data

storage can be executed on DRAM, such as database “scratch pads”. Data that

needs to be made persistent or structures that are very large can be routed to

https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.htmlhttps:/www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html

4 Revision: 1.0

the Intel® Optane™ DC persistent memory. To make data persistent in
memory, you must use App Direct Mode.

App Direct mode requires an operating system or virtualization environment

enabled with a persistent memory-aware file system. Contact your OS
distributor for support details.

1.1.2 Using Persistent Memory

App Direct Mode may be used as Storage over App Direct, in which case, the

driver surfaces a traditional block storage interface transparent to applications,
so they do not need to be modified. Storage over App Direct is implemented

with copy on write optimization via a block translation table to provide power-
fail write atomicity.

Otherwise, applications can be modified to access App Direct capacity with

direct load/store mechanisms using a persistent memory aware file system.

This completely bypasses the kernel and provides the shortest code path to the
persistent memory. To learn more about using and programming for persistent

memory, refer to http://pmem.io/.

Warning: A backup of the persistent memory data sets to secondary storage is needed

so that the backup may be used to restore the original data sets after a data
loss event.

1.2 Installation

http://pmem.io/

Revision: 1.0 5

1.2.1 System Requirements

Intel® Optane™ DC persistent memory is designed for use with the 2nd Gen
Intel® Xeon® Processor Scalable Family and is enabled by a select sub-set of

processors, primarily enabled by the Gold and Platinum tier models.

1.2.2 Software and Firmware Requirements

Platform software and Intel® Optane™ DC persistent memory firmware

alignment is strongly recommended. The PMM active (operating) firmware

version for all installed modules must be the same prior to normal/runtime
operations.

The benefits of updating the software and firmware is to keep the platform

software current and compatible with other system modules. Updates may

include changes such as fixed issues, improved stability and security updates.

1.2.3 Handling, Installation and Removal

Industry standard DIMM practices and procedures must be followed while

handling, installing or removing PMM. While taking proper ESD (Electrostatic

Discharge) measures, care must be taken not to stack modules together and to
handle only by the module edges, never with enough force to flex or bend the

module.

1.2.4 DIMM Populations

1.2.4.1 Recommended Topologies

The following topologies are recommended per CPU socket. For multiple socket

systems, each socket should be populated identically, with the exception of the

single PMM per socket topology. The part number must be the same for all
installed PMM. Populating both slots on a single channel with PMM is not

supported.

Note: DDR channel and DIMM slot nomenclatures may vary depending on platform

implementation. Guidance for PMM installation in first position (slot 0) followed
by the DIMM (slot 1). When one DIMM is used, it must be populated furthest

away from the CPU (slot 0) of the channel.

6 Revision: 1.0

2-2-2 (Six DDR4 DIMMs, Six PMMs)
 Modes Supported: App Direct, Memory Mode

2-2-1 (Six DDR4 DIMMs, Four PMMs)
 Modes Supported: App Direct, Memory Mode

2-2-1 (Eight DDR4 DIMMs, Two PMMs)
 Modes Supported: App Direct, Memory Mode

2-1-1 (Six DDR4 DIMMs, Two PMMs)

 Modes Supported: App Direct, Memory Mode

Revision: 1.0 7

1-1-1 (Four DDR4 DIMMs, Two PMMs)
 Modes Supported: App Direct, Memory Mode

2-1-1 (Six DDR4 DIMMs, One PMM)
 Modes Supported: App Direct Only

1.2.5 Documentation and Software Resources

Quick Start Guide: Provision Intel® Optane™ DC Persistent Memory

Non-Volatile Device Control (ndctl) is recommended for creating namespaces

for the Linux operating system. It is available for download from GitHub* at
https://github.com/pmem/ndctl.

To learn more about persistent memory programming and the Persistent

Memory Development Kit (PMDK), visit: http://pmem.io/.

Ipmctl is an open source utility for configuring and managing PMM. This utility

was created and is maintained by Intel. It is available for download from
GitHub*. at https://github.com/intel/ipmctl.

https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux
https://github.com/intel/ipmctl
https://github.com/pmem/ndctl
http://pmem.io/
https://github.com/intel/ipmctl
https://github.com/intel/ipmctl

8 Revision: 1.0

2 Managing PMM

Intel Ipmctl is a platform utility for configuration and management capabilities
including discovery, provisioning, maintenance, and monitoring of the PMMs. It

supports the following functionality.

• Discovery

• Configuration

• Firmware management

• Security functionality management

• Health monitoring

• Performance tracking

• Debug and troubleshooting

For more complete information, refer to the ipmctl GitHub* page.

Note: This document provides examples of essential PMM management functionality

from the perspective of the OS ipmctl command line utility.

ipmctl help

Example commands are formatted where [brackets] indicate optional items and
(parenthesis) indicate that a value is required. The binary executable name

“ipmctl” is omitted for simplicity.

2.1 Discovery

The Show Topology command displays both the PMM and DDR4 DRAM DIMMs.

show -topology

The Show Device command displays the PMM discovered in the system.

show -dimm

To view detailed information about the PMM, add the all option.

show -a -dimm

The Show Memory Resources command displays how the PMM capacity is

provisioned at the system level.

show -memoryresources

https://github.com/intel/ipmctl

Revision: 1.0 9

2.2 Provisioning

Provisioning Intel® Optane™ DC memory modules is a two-step process.

During this process, a goal is specified and stored on the persistent memory
modules for the BIOS to read on the next reboot. A goal configures the PMM in

Memory Mode, App Direct mode, or both.

The installed DIMM population topology also impacts which modes are

supported; refer to the recommended topology figures previously shown.

Warning: Changing the memory configuration is a destructive operation which may

result in the loss of data stored in the persistent memory region of the PMM.
Therefore, existing data should be backed up to other storage prior to

provisioning if it needs to be preserved.

Note: Persistent data is not explicitly cleared during provisioning. Metadata such as
file system and SW RAID should be deleted prior to provisioning.

2.2.1 Create Memory Allocation Goal

Use the Create Memory Allocation Goal command to create a new configuration

request.

Memory Mode 100%

Any percentage of the PMM capacity across sockets can be provisioned in

Memory Mode, as described next. In this example, 100 represents the
percentage of capacity to be provisioned in Memory Mode.

create -goal MemoryMode=100

App Direct Mode

PMM can be provisioned in App Direct mode with the interleaving enabled or
disabled for the persistent memory.

App Direct (Interleaved)

Interleaving increases the throughput of reads and writes to persistent
memory. The default Create Goal command creates an interleaved region

configured for App Direct mode. The following two commands are equivalent:

create -goal

create -goal PersistentMemoryType=AppDirect

App Direct (Not Interleaved)

To disable interleave, keep the App Direct capacity contained to each PMM,

specify PersistentMemoryType=AppDirectNotInterleaved.

create -goal PersistentMemoryType=AppDirectNotInterleaved

10 Revision: 1.0

Concurrent Operating Modes (Mixed Mode)

The following command assigns 60 percent of the available persistent memory
capacity to Memory Mode. The remainder is configured as an interleaved set

for App Direct mode.

create -goal MemoryMode=60

The Show Memory Allocation Goal command displays a pending goal request

prior to reboot. In the case that a goal is not applied correctly, this command
returns the configuration request and status. “No result” is returned if the goal

was processed successfully during reboot.

show -goal

The Delete Memory Allocation Goal command enables the removal of a pending

goal.

delete -goal

2.2.1.1 Advanced Preferences

User preferences allow for provisioning PMM for more advanced use cases. To
view the current preferences, use the Show Preferences command.

show -preferences

To change preferences, use the Change Preferences command.

set -preferences (Name=Value)

The following preferences allow for adjusting the default settings when creating
a memory allocation goal.

Preference Name Description Options

APPDIRECT_GRANULARITY The minimum App

Direct granularity

per PMM.

RECOMMENDED: Use the default

recommended App Direct granularity

of 32 GiB.

1: Allow 1 GiB App Direct granularity.

2.2.2 Linux* Persistent Memory and Namespace

Management

Each OS vendor (OSV) provides native tools for persistent memory and

namespace management. The following sections provide Linux examples and
references for detailed explanation.

Linux References:

Intel’s Quick Start Guide for Linux
https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-

optane-dc-persistent-memory-on-linux

https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux
https://software.intel.com/en-us/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux

Revision: 1.0 11

The official project documentation for ndctl.

http://pmem.io/ndctl/

The official project location for ndctl.

https://github.com/pmem/ndctl

Basic guide to getting started with persistent memory in Linux.

https://nvdimm.wiki.kernel.org/

2.2.2.1 Linux Command Line (ndctl) Overview

The ndctl is a utility library for managing the libnvdimm (non-volatile memory

device) sub-system in the Linux kernel. This library does not provide
functionality for memory allocation provisioning, the ipmctl create -goal

equivalent functionality.

The ndctl command line provides functions used for persistent memory and
namespace management, device list, update firmware and more.

2.2.2.2 Listing Regions

After the memory provisioning (goal processing) reboot, the newly created

DIMM-interleave-sets are represented as persistent memory “regions” of App

Direct capacity. Regions can be listed with the List Regions command.

ndctl list –-regions --human

Sample output:

[

 {

 "dev":"region1",

 "size":"756.00 GiB (811.75 GB)",

 "available_size":"756.00 GiB (811.75 GB)",

 "max_available_extent":"756.00 GiB (811.75 GB)",

 "type":"pmem",

 "iset_id":"0x6f3e7f4888992ccc",

 "persistence_domain":"memory_controller"

 },

 {

 "dev":"region0",

 "size":"756.00 GiB (811.75 GB)",

 "available_size":"756.00 GiB (811.75 GB)",

 "max_available_extent":"756.00 GiB (811.75 GB)",

 "type":"pmem",

 "iset_id":"0x1c9e7f487b952ccc",

 "persistence_domain":"memory_controller"

 }

]

http://pmem.io/ndctl/
https://github.com/pmem/ndctl
https://nvdimm.wiki.kernel.org/

12 Revision: 1.0

To determine which PMMs are part of a particular region, use the list command
with the regions and dimms modifiers. Each PMM will be listed within the

mappings group.

ndctl list –-regions --dimms

Sample output:

{

 "dimms":[

 {

 "dev":"nmem1",

 "id":"8680-a2-1730-000006a5",

 "handle":257,

 "phys_id":45

 },

 {

 "dev":"nmem3",

 "id":"8680-a2-1730-00000632",

 "handle":4353,

 "phys_id":69

 },

 {

 "dev":"nmem0",

 "id":"8680-a2-1730-0000059f",

 "handle":1,

 "phys_id":33

 },

 {

 "dev":"nmem2",

 "id":"8680-a2-1730-000004f3",

 "handle":4097,

 "phys_id":57

 }

],

 "regions":[

 {

 "dev":"region5",

 "size":268435456000,

 "available_size":268435456000,

 "max_available_extent":268435456000,

 "type":"pmem",

 "iset_id":8743142107817513552,

 "mappings":[

 {

 "dimm":"nmem3",

 "offset":268435456,

 "length":134217728000,

 "position":1

 },

 {

 "dimm":"nmem2",

 "offset":268435456,

 "length":134217728000,

Revision: 1.0 13

 "position":0

 }

]

 },

 {

 "dev":"region4",

 "size":268435456000,

 "available_size":0,

 "max_available_extent":0,

 "type":"pmem",

 "iset_id":8015984336272174284,

 "mappings":[

 {

 "dimm":"nmem1",

 "offset":268435456,

 "length":134217728000,

 "position":1

 },

 {

 "dimm":"nmem0",

 "offset":268435456,

 "length":134217728000,

 "position":0

 }

]

 “persistence_domain”:”memory_controller”

 }

]

}

2.2.2.3 Creating Namespaces

Regions can then be divided into one or more namespaces in order for the

capacity to be surfaced to the Linux operating system and used by applications.
Just as an SSD can be carved into namespaces, persistent memory

namespaces represent the unit of storage that appears as a device that can be
used for I/O. To create a namespace, use the Create Namespace command.

ndctl create-namespace

The default syntax will create namespace with DAX support, mode=fsdax. A
DAX aware filesystem may subsequently be created on this namespace to

provide optimal application performance. The following example is equivalent
syntax to explicitly set the mode and also provides the optional syntax to

specify a target region.

ndctl create-namespace –-mode fsdax [--region (value)]

To create a Storage over App Direct namespace for use as a traditional block

storage device with power-fail write atomicity, use sector mode.

ndctl create-namespace –-mode sector [--region (value)]

Multiple namespaces may be created from the same region. Each namespace is
a minimum of 1 GiB (in bytes) and aligns to interleave-width and alignment;

14 Revision: 1.0

for example, ‘--size=’ must align to interleave-width: 6 and alignment:
2097152. Sector namespaces may then be further subdivided by a partition

table.

To create multiple namespaces of specific capacity within a single region, use
the Create Namespace command with the Size option.

2.2.2.4 Listing Namespaces

To display namespaces, use the List command. Namespaces are shown by
default without additional arguments.

ndctl list --human

Sample output:

[

 {

 "dev":"namespace1.0",

 "mode":"fsdax",

 "map":"dev",

 "size":"744.19 GiB (799.06 GB)",

 "uuid":"56ca2d82-36fc-4bf6-b434-b5315957f5ca",

 "blockdev":"pmem1"

 },

 {

 "dev":"namespace0.0",

 "mode":"fsdax",

 "map":"dev",

 "size":"744.19 GiB (799.06 GB)",

 "uuid":"5ec652fa-3642-4e93-ad76-90d70872f3a3",

 "blockdev":"pmem0"

 }

]

2.2.2.5 Delete Configuration

The current configuration can be deleted by first disabling and destroying

namespaces and then disabling the active regions. When a namespace is
destroyed, the capacity is returned to the underlying region and may be used

in the creation of new namespaces.

2.3 Maintenance

This section describes some common maintenance operations.

2.3.1 Firmware Update

The Show Device Firmware command using ipmctl.

show -firmware

Revision: 1.0 15

This command displays up to two firmware versions per PMM considering that
updating the firmware requires a power cycle. The active firmware is the

firmware that is currently executing. The “staged” firmware is stored on the
PMM and staged for execution after the next power cycle.

If for any reason the firmware update fails to load properly after the power

cycle, the firmware will fall back to the previously active version.

Note: Only one firmware is allowed to be staged per power cycle. Therefore, if a

version is already staged, power cycle before attempting to stage a new
version.

The Update Firmware command provides an examine option which validates a

firmware image file and may be used prior to loading the image.

load -source (firmware file) -examine -dimm

Load the firmware image on the PMM using the Update Firmware command. It

is recommended that all PMM in the system have the same firmware version,
although updating the firmware on individual PMM is also supported.

load -source (firmware file) -dimm

In case the PMM firmware is busy processing a long-operation command
request, such as Address Range Scrub (ARS), it will not be possible to update

the firmware and an error will be returned.

Check that the new firmware was staged properly using the Show Device

Firmware command and then power cycle the system. Before using the PMM,
verify that the new firmware is now successfully executing on all PMM using the

Show Device Firmware command.

Linux Workarounds for ARS Operation

To wait for completion of an active Linux ARS long operation(s) and then

proceed with the Update Firmware command, use the following command:

ndctl wait-scrub; ipmctl load -source (firmware file) -dimm

Note: ARS may take hours to days depending on the persistent memory
configuration and capacity. In such case, it may be preferable to disable the

ARS at boot via the kernel boot command line parameter.

The disable ARS process command will require adding a kernel boot parameter,

rebooting the OS and then the firmware update. After verifying the firmware
updated successfully, ensure to remove the added kernel boot command entry

to restore the original (default) ARS state setting and execution of ARS
operations.

1. Add Kernel Boot Command Line Entry:

nfit.no_init_ars

2. Reboot Linux.

3. Verify that an ARS long operation(s) is not currently active.

16 Revision: 1.0

show -d ARSStatus -dimm

4. Stage the firmware, using the Update Firmware command.

load -source (firmware file) -dimm

5. Check that the new firmware was staged properly using the Show Device
Firmware command and then power cycle the system.

show -dimm -firmware

6. Verify a successful firmware update using the Show Device Firmware

command.

7. Remove the “nfit.no_init_ars” kernel boot command line entry and reboot
the OS in order to restore the default Linux background ARS operation

setting.

2.3.2 Adding New PMM

Adding new PMMs to a system that is already configured provides for a few

choices depending on the current configuration, the platform settings, and the

desired usage of the new PMM.

New PMMs will be used in Memory Mode if the platform supports it. The newly
added PMMs can be configured for use in a different mode leaving the existing

PMM as they were. Or the new and existing PMM can be configured for use in a
different mode together.

Refer to the provisioning section for detailed steps.

2.3.3 Moving PMM

The information that describes how the PMM are provisioned and interleaved

together along with the namespace information is physically stored on the

PMM. Therefore, it is possible to move PMMs from one system to another and
retain the configuration and any data stored in the persistent memory.

However, if the PMM are configured with interleaved App Direct Mode capacity,

the PMM must be put into the new system so they can be interleaved in the

same way as they were in the previous system. Therefore, it is recommended
to install them in the same position relative to the CPU, memory controller, and

memory channel.

PMMs that are configured for use in only Memory Mode or App Direct Mode that
is not interleaved can be installed in any order in the new system and the

configuration and data stored on the PMM will be applied.

2.3.4 Replacing PMM

Any App Direct capacity that is interleaved requires that all of the PMMs in the
interleave set (generally all the PMM installed on a specific CPU) are present

and functional in order to access the persistent data. Therefore, if it becomes

Revision: 1.0 17

necessary to replace a PMM, further actions are required to maintain the
persistent data before replacing the PMM.

Before removing the PMM, the data must be backed up to other storage and all

existing namespaces must be deleted. If the same memory configuration is
desired after replacing the PMM, dump the current configuration to a file using

the Dump Memory Allocation Settings command.

dump -destination (file) -system -config

Then replace the PMM and load the configuration as a new memory allocation

goal using the Load Memory Allocation Settings command.

load -source (file) -goal

Because this creates a new memory allocation goal, a reboot is necessary to

map the capacity into the system physical address space. After the reboot,
proceed with creating namespaces as desired and restoring the existing data to

the new namespaces.

2.4 Debug and Troubleshooting

This section provides information about some common operations that may be

required to debug or troubleshoot an issue with a PMM.

2.4.1 Checking PMM Health

The Show Device command return data includes the “HealthState” attribute.

show -a -dimm

For additional health statistics, use the Show Sensor command.

show -a -sensor

Sensors are reported for the following health data.

Sensor Name Description

Health The current PMM health as reported in the SMART log

MediaTemperature The current PMM media temperature in Celsius

ControllerTemperature The current PMM controller temperature in Celsius

PercentageRemaining Percentage of spare capacity remaining

LatchedDirtyShutdownCount The number of shutdowns without notification over the

lifetime of the PMM

UnlatchedDirtyShutdownCount The number of shutdowns without notification over the

lifetime of the PMM. This counter is the same as

LatchedDirtyShutdownCount, except it will always be

incremented on a dirty shutdown even if Latch System

Shutdown Status was not enabled

PowerOnTime The total power-on time over the lifetime of the PMM

18 Revision: 1.0

Sensor Name Description

UpTime The total power-on time since the last power cycle of the

PMM

PowerCycles The number of power cycles over the lifetime of the PMM

FwErrorCount The total number of firmware error log entries

PMM support alarm thresholds for the percentage value of factory expected life
span remaining, the temperature of the Intel® Optane™ Media, and the

temperature of the controller. These are customizable using the Change Sensor

Settings command.

set -sensor (sensor) NonCriticalThreshold=(value)

EnabledState=(0|1)

If enabled, the PMM will send an alert when the reading exceeds the threshold

and the sensor status will change to a non-critical state.

2.4.2 Diagnostics

Beyond checking the health information, diagnostics are provided to perform

more detailed checks of the PMM using the Run Diagnostic command.

start -diagnostic

2.4.3 Recovering from Issues

As PMM near their lifespan or encounter issues, recovery actions may be
required to bring the PMM and the overall system back to a functional state.

Refer to the following sections to determine how best to handle different types
of issues based on the PMM health as reported by the ipmctl commands.

Issue How to Determine What to Do

At Risk SMART: Health Status = Noncritical

show -dimm: HealthState = Minor Failure

show -sensor: CurrentState = Noncritical

Backup persistent data

and replace the impacted

PMM.

Degraded SMART: Health Status = Critical

show -dimm: HealthState = Critical Failure

show -sensor: CurrentState = Critical

Backup persistent data

and replace the impacted

PMM.

Busy show -dimm: ARSStatus = In progress Wait until the long running

operation completes

before trying to use the

PMM.

Setup issue show -dimm: ConfigurationStatus = Failed Run the PCD diagnostic to

determine the cause or re-

provision.

Failed SMART: Health Status = Fatal

show -dimm: HealthState = Non-functional

Reset or Power Cycle the

platform to recover from a

firmware error.

Revision: 1.0 19

Issue How to Determine What to Do

If “Non-functional” state

persists, triage further to

determine the correct

recovery action.

Failed SMART: Health Status = Fatal (Persisted

status across Power Cycle)

show -dimm: HealthState = Non-recoverable

error

show -sensor: CurrentState =Fatal

Replace the impacted

PMM.

Unmanageable show -dimm: HealthState = Unmanageable Run the quick health

diagnostic to determine

the cause.

Missing

namespace

show -namespace Triage further to

determine the correct

recovery action.

2.4.3.1 At Risk

There are two indications that a PMM may be at risk of failure.

1. The SMART health status changes to noncritical. When this happens, an

alert is triggered (if enabled) and the health state is reported as Minor

Failure.

2. An alarm is tripped and the sensor state changes to Noncritical.

A noncritical SMART health status is indicative that the PMM is reaching its

lifespan and should be replaced.

When an alarm threshold is exceeded, the sensor changes to a Noncritical
status and an alert is triggered. In the case of a temperature alarm, the PMM

should be cooled to avoid further remediation such as throttling or shutdown. If
the percentage of spare capacity remaining alarm is tripped, the PMM may be

reaching its lifespan and should be replaced.

2.4.3.2 Degraded

When a PMM is degraded, performance may be limited and the PMM is at risk

of failure. This is indicated in one of the following ways.

1. The SMART health status changes to critical. When this happens, an alert

is triggered (if enabled) and the health state is reported as Critical Failure.

2. A temperature sensor changes to Critical state.

When the SMART health status changes to Critical, the PMM has reached its

lifespan or has suffered an internal hardware failure. In either case, the PMM

should be immediately replaced to avoid potential loss of persistent data.

If a temperature sensor reports a Critical state, the PMM has begun throttling
performance to prevent damage to the PMM. In this situation, the PMM should

be cooled down immediately to avoid shutdown.

20 Revision: 1.0

2.4.3.3 Failed

When a PMM fails, any persistent data stored on the PMM is inaccessible and

the PMM must be replaced or removed in order to restore overall system
functionality. Depending on when or how a PMM fails and whether or not it is

still responding, the failed state will be reported in the following way.

1. The SMART health status changes to fatal. When this happens, an alert is

triggered (if enabled) and the health state is reported as non-recoverable

error.

2.4.3.4 Busy

When a long operation such as an address range scrub is running, some PMM
functionality may be limited. Refer to the Discovery section for information on

how to retrieve PMM status with the Show Device command. Once the long

operation is complete, the PMM functionality will be restored.

2.4.3.5 Unmanageable

Manageability is the ability for the host software to manage a PMM. A PMM will
report an Unmanageable health state when the software is incompatible with

the DIMM or the PMM is not responding.

Manageability is determined based on the DIMM vendor and device identifiers

and the interface version of the firmware installed on the DIMM. Running the
quick health diagnostic will report the reason for the incompatibility.

If the vendor or device information is incorrect or the firmware API version is

unavailable, and the DIMM is actually a PMM, it is likely the PMM is not

responding. This could occur at runtime, for example, if the PMM is shut down
due to a thermal issue. Cooling down the PMM and restarting may resolve the

unmanageable state.

If the PMM is not responding due to a hardware failure, the PMM will need to be
replaced or removed in order to restore overall system functionality.

If the PMM firmware is incompatible with the software, refer to the Installation

section to install a compatible version of the firmware and software.

2.4.3.6 Setup Issue

Provisioning is an interaction between the software, the platform firmware, and

metadata stored on the PMM during a system reboot. While unlikely, it is

possible that an incompatibility exists or a hardware failure occurs that results
in a configuration status issue as reported in the Show Device command.

The platform configuration diagnostic may provide more details about the

cause of the failure. If the issue is the result of old metadata stored on the

PMM, re-provisioning the PMM may fix the issue. If the issue is the result of a
PMM failure, refer to the preceding sections to determine the correct actions.

Revision: 1.0 21

2.4.3.7 Missing Namespace

One or more missing namespaces could be caused by the following:

1. The software is waiting for an address range scrub long operation to
complete before surfacing the namespaces to the OS. In this case, wait

for the long operation to complete before attempting to use the

namespace.

2. One or more PMM contributing capacity to the namespace are security

locked with a passphrase. The namespaces will not be surfaced to the OS
until the underlying PMM are unlocked or security is disabled by removing

the passphrase.

3. One or more PMM contributing capacity to the namespace has

encountered an issue and the persistent memory capacity is not available.
Refer to the preceding sections to determine the correct action.

2.4.4 Dump Debug Log

Occasionally, PMM encounter an error that requires debug information to be

gathered for offline analysis. This can be done using the Dump Debug Log
command. This debug log is also referred to as the Firmware Debug Log.

dump -destination (file) -debug -dimm (DimmID)

The Firmware Debug Log is in binary form and it is not encrypted or signed.

2.4.5 Dump System Support Data

The Dump Support Data command provides functionality to create and save

platform level support data to a file for off-line analysis by support personnel.

Support data includes system log(s), error log(s), sensor information and

diagnostic results.

dump -destination (file) -support

